Important Notice: Our web hosting provider recently started charging us for additional visits, which was unexpected. In response, we're seeking donations. Depending on the situation, we may explore different monetization options for our Community and Expert Contributors. It's crucial to provide more returns for their expertise and offer more Expert Validated Answers or AI Validated Answers. Learn more about our hosting issue here.

Can mathematicians prove the Riemann hypothesis?

0
Posted

Can mathematicians prove the Riemann hypothesis?

0

In the early 1900s, German mathematician David Hilbert said that if he awakened after 1,000 years of sleep, the first question he’d ask would be: Has the Riemann hypothesis been proven? It’s been only 100 years, but the answer so far is no. Put forward by Bernhard Riemann in 1859, the hypothesis would establish the distribution of zeroes on something called the Riemann zeta function. That, in turn, correlates to the intervals between prime numbers. Prime numbers (numbers that can be divided only by 1 and themselves: 2, 3, 5, et cetera) are the building blocks of mathematics, because all other numbers can be arrived at by multiplying them together (e.g., 150 = 2 x 3 x 5 x 5). Understanding the primes sheds light on the entire landscape of numbers, and the greatest mystery concerning primes is their distribution. Sometimes primes are neighbors (342,047 and 342,049). Other times a prime is followed by desert of nonprimes before the next one pops up (396,733 and 396,833). Making sense of t

0

In the early 1900s, German mathematician David Hilbert said that if he awakened after 1,000 years of sleep, the first question he’d ask would be: Has the Riemann hypothesis been proven? It’s been only 100 years, but the answer so far is no. Put forward by Bernhard Riemann in 1859, the hypothesis would establish the distribution of zeroes on something called the Riemann zeta function. That, in turn, correlates to the intervals between prime numbers. Prime numbers (numbers that can be divided only by 1 and themselves: 2, 3, 5, et cetera) are the building blocks of mathematics, because all other numbers can be arrived at by multiplying them together (e.g., 150 = 2 x 3 x 5 x 5). Understanding the primes sheds light on the entire landscape of numbers, and the greatest mystery concerning primes is their distribution. Sometimes primes are neighbors (342,047 and 342,049). Other times a prime is followed by desert of nonprimes before the next one pops up (396,733 and 396,833). Making sense of t

Related Questions

What is your question?

*Sadly, we had to bring back ads too. Hopefully more targeted.