Important Notice: Our web hosting provider recently started charging us for additional visits, which was unexpected. In response, we're seeking donations. Depending on the situation, we may explore different monetization options for our Community and Expert Contributors. It's crucial to provide more returns for their expertise and offer more Expert Validated Answers or AI Validated Answers. Learn more about our hosting issue here.

near the mark, or is it a different process entirely?

0
Posted

near the mark, or is it a different process entirely?

0

(From: Doug McDonald (mcdonald@scs.uiuc.edu).) This is correct. (From: Martin.) If my guess is anything like correct, it would seem valid to predict that the doubling should not be particularly frequency-specific, so one should be able to use the crystal to double (or triple, etc.) any visible/IR/UV wavelength more or less equally. Yet, I have not heard of this being done. I have not heard of doubling the output of an 808nm pump diode directly (without YAG, etc.) to get UV. This suggests to me that there is strong wavelength-dependence. If so, why? (From: Doug.) Now the tricky part. You are thinking like radio frequencies. At readio frequencies, the non-linear element (e.g. diode) is small compared to a wavelength. At optical frequencies it is not. Consider a yagi antenna that has each element nonlinear. It won’t work for the second harmonic at all, and will have a vastly different spatial pattern for the third harmonic. The point is that the non-linear signals from different parts of

0

(From: Doug McDonald (mcdonald@scs.uiuc.edu).) This is correct. (From: Martin.) If my guess is anything like correct, it would seem valid to predict that the doubling should not be particularly frequency-specific, so one should be able to use the crystal to double (or triple, etc.) any visible/IR/UV wavelength more or less equally. Yet, I have not heard of this being done. I have not heard of doubling the output of an 808nm pump diode directly (without YAG, etc.) to get UV. This suggests to me that there is strong wavelength-dependence. If so, why? (From: Doug.) Now the tricky part. You are thinking like radio frequencies. At readio frequencies, the non-linear element (e.g. diode) is small compared to a wavelength. At optical frequencies it is not. Consider a yagi antenna that has each element nonlinear. It won’t work for the second harmonic at all, and will have a vastly different spatial pattern for the third harmonic. The point is that the non-linear signals from different parts of

Related Questions

What is your question?

*Sadly, we had to bring back ads too. Hopefully more targeted.