Important Notice: Our web hosting provider recently started charging us for additional visits, which was unexpected. In response, we're seeking donations. Depending on the situation, we may explore different monetization options for our Community and Expert Contributors. It's crucial to provide more returns for their expertise and offer more Expert Validated Answers or AI Validated Answers. Learn more about our hosting issue here.

What approaches for fume hood controls help minimize energy intensity without compromising lab safety?

0
Posted

What approaches for fume hood controls help minimize energy intensity without compromising lab safety?

0

Tsimanis: The use of presence sensors helps to determine the presence of a person in front of the hood by detecting motion, and also commands the lab airflow control system from an in-use operating face velocity (e.g., 100 fpm) to a standby face velocity (e.g., 60 fpm) and vice versa. When the sensor detects someone’s presence and/or motion within the detection zone, it is commanding the system to the in-use face velocity within 1.0 seconds. Additionally, the use of the variable volume control for a fume hood operation is based on the position of the fume hood sash. When the fume hood sash is fully open, the fume hood exhaust will be at the maximum position; and with the fume hood sash closed, the fume hood exhaust will be at a minimum position. This strategy allows reduction in the airflow with reduction in total energy use. The most cost-effective application for this concept is for a small lab with a single fume hood. Sprangers: Unless the fume hood and/or lab housing needs to opera

Related Questions

Thanksgiving questions

*Sadly, we had to bring back ads too. Hopefully more targeted.