Are current molecular dynamics force fields too helical?
Accurate force fields are essential for the success of molecular dynamics simulations. In apparent contrast to the conformational preferences of most force fields, recent NMR experiments suggest that short polyalanine peptides in water populate the polyproline II structure almost exclusively. To investigate this apparent contradiction, with its ramifications for the assessment of molecular force fields and the structure of unfolded proteins, we performed extensive simulations of Ala(5) in water ( approximately 5 micros total time), using twelve different force fields and three different peptide terminal groups. Using either empirical or density-functional-based Karplus relations for the J-couplings, we find that most current force fields do overpopulate the alpha-region, with quantitative results depending on the choice of Karplus relation and on the peptide termini. Even after reweighting to match experiment, we find that Ala(5) retains significant alpha- and beta-populations. In fact