Important Notice: Our web hosting provider recently started charging us for additional visits, which was unexpected. In response, we're seeking donations. Depending on the situation, we may explore different monetization options for our Community and Expert Contributors. It's crucial to provide more returns for their expertise and offer more Expert Validated Answers or AI Validated Answers. Learn more about our hosting issue here.

How do bale walls carry vertical and lateral loads?

0
Posted

How do bale walls carry vertical and lateral loads?

0

While the California Health and Safety Code sanctions both load-bearing and non- load-bearing systems, most California builders use a wood post-and-beam system that carries vertical loads in a conventional manner. Wind and earthquake loads are carried by means such as diagonal steel straps, which can be conventionally engineered. The bale walls thus are primarily subjected to wind and earthquake loading against their faces. Test results show that plastered wall perform well with wind loads of up to 50 pounds per square foot. However, the bale walls add a significant secondary structural system Compared to wood- framed structures, bale buildings are resilient and flexible. We believe the bale walls can absorb some of the force of an earthquake and will provide a backup structural system in the event of failure of the post-and-beam system.

0

In load bearing straw bale structures, the bales themselves carry the vertical loads. High density bales and proper compression are a must to ensure the bales will not settle under the weight of the roof assembly. In-fill structures rely on the framing to carry the vertical loads. Lateral loads, or shear strength, is carried by the wall assembly as a whole. The bales, the structural wire mesh, and the plaster all play a part in the handling of lateral loads. Recent engineering has shown bale wall assemblies to be structural sound even in the most volatile earthquake zones of California.

0

A. While the California Health and Safety Code sanctions both load-bearing and non- load-bearing systems, most California builders use a wood post-and-beam system that carries vertical loads in a conventional manner. Wind and earthquake loads are carried by means such as diagonal steel straps, which can be conventionally engineered. The bale walls thus are primarily subjected to wind and earthquake loading against their faces. Test results show that plastered wall performs well with wind loads of up to 50 pounds per square foot. However, the bale walls add a significant secondary structural system Compared to wood- framed structures; bale buildings are resilient and flexible. We believe the bale walls can absorb some of the force of an earthquake and will provide a backup structural system in the event of failure of the post-and-beam system.

Related Questions

What is your question?

*Sadly, we had to bring back ads too. Hopefully more targeted.