What is the Triple-Alpha Process?
The triple-alpha process is the means by which stars fuse helium nuclei into carbon and oxygen nuclei when they have exhausted their hydrogen fuel. Initiating the triple-alpha process requires sustained temperatures of over 100,000,000 K and a sufficient density of helium. This happens when a star begins to build up substantial amounts of helium “ash” in its core from hydrogen burning. The helium has nowhere to go and doesn’t produce its own energy, so it aggregates in the core and contracts. The contraction increases the heat and pressure tremendously. At 100 megaKelvins, the triple-alpha process, also known as helium burning, initiates. The triple-alpha process gets its name because the process is the fusion of three alpha particles. An alpha particle is two protons and two neutrons bound together, which is the same thing as a helium nucleus. Under the colossal pressures at the stellar core, two helium nuclei can be coaxed into combining into a beryllium nucleus, releasing a gamma ra
The triple-alpha process is the means by which stars fuse helium nuclei into carbon and oxygen nuclei when they have exhausted their hydrogen fuel. Initiating the triple-alpha process requires sustained temperatures of over 100,000,000 K and a sufficient density of helium. This happens when a star begins to build up substantial amounts of helium “ash” in its core from hydrogen burning. The helium has nowhere to go and doesn’t produce its own energy, so it aggregates in the core and contracts. The contraction increases the heat and pressure tremendously. At 100 megaKelvins, the triple-alpha process, also known as helium burning, initiates. The triple-alpha process gets its name because the process is the fusion of three alpha particles. An alpha particle is two protons and two neutrons bound together, which is the same thing as a helium nucleus. Under the colossal pressures at the stellar core, two helium nuclei can be coaxed into combining into a beryllium nucleus, releasing a gamma ra