What optimizes genetic algorithms?
Computational methods often employ genetic algorithms (GA’s). The appeal of GAs is that they are modeled after biological evolution. The latter is the main motivation for tolerating such an inefficient awkward process. The GA search technique begins with a large random pool of representations of “potential solutions.” Genetic algorithms are seen as a subset of evolutionary algorithms and as “evolutionary computation.” The methodology is inspired by modeling a random beginning phase space, various kinds of mutations, inheritance and selection. The experimenter chooses the fittest solutions from each generation out of the “evolving” phase space of potential solutions. The goal of the process is optimization of a certain function.